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Abstract-A similarity solution has been obtained for a natural convection flow on a heated isothermal 
wall suspended in a quiescent, thermally stratified atmosphere. A new similarity variable is defined which 
reduces to that for the classical case of an isothermal plate in a uniform temperature, quiescent medium. 
It also properly represents the case for an isothermal plate in a linear stably stratified atmosphere. This 
is a unique feature which has not been discussed before. Predicted values of the local temperature defect 

and flow reversal are in qualitative agreement with results obtained by earlier investigators. 

INTRODUCTION 

NATURAL convection flows on an isothermal vertical 

plate suspended in an infinite and quiescent atmo- 
sphere having uniform temperature forms a classical 
textbook solution [l J. In many instances, however, 
the quiescent media may not be isothermal. For 
example, the atmosphere itself is thermally stratified 
as is the ocean. A room which is heated by electrical 
wires embedded in the ceiling may also be thermally 
stratified. A room fire with an open door or window 
through which fresh air is supplied near the bottom 
offers another example of a thermally stratified situ- 
ation. 

Several attempts have been made in the past 25 
years to investigate the problem of natural convection 
over a vertical wall in a stratified medium due to its 
obvious importance. Early studies were focused on 
seeking similarity solutions because the similar vari- 
ables can give great physical insight with minimal 
efforts. Other techniques were used later when it was 
thought that all possible similarity solutions were 
exhausted for this problem. Yang [Z] presented a 
general approach for dbtaining similarity solutions 
to a class of problems for a non-isothermal vertical 

wall surrounded by an isothermal atmosphere. Cheese- 
wright [3] extended Yang’s [2] approach and found 
similarity solutions that accounted for some specific 
types of non-isothermal surroundings and wall tem- 
perature variation. Among other results he showed 
that a similarity solution is possible if the wall and 

ambient temperatures vary as T, - T, = K,(m + 1)x”, 

and T, - T, = K,mx”, where K,, m, and n are con- 
stants. For a constant wall temperature and linear 
ambient temperature, this would indicate that T, 

would have to decrease with increasing x. Such a case 
would not be stratified in practice except for a few 
situations like, for example, for the fluid being water 
between 0 and 4°C. Yang et al. [4] gave more details 
and physical explanations for this class of problems. 

However, none of the variety of cases presented by 
Cheesewright [3] and Yang et al. [4] included a case 
in which the wall was isothermal and the ambient 
atmosphere had a linearly increasing temperature 
distribution. 

Nevertheless, it has been shown in the literature 

that the occurrence of a linear and stable ambient 
temperature distribution is a quite feasible and practi- 
cal situation. Eckert and Carlson [S] investigated the 
natural convection flow of air in a rectangular cell 
with one vertical wall heated and the other cooled. 
The ceiling and the bottom were made adiabatic and 
the resulting flow was observed using an interfer- 
ometer. They observed that under certain geometric 

and Grashof number conditions the central portion 
of the enclosure was nearly quiescent and produced 
a remarkably linear and stable temperature gradient 
in the region. Furthermore, flow near the vertical 
sides appeared to behave like a boundary layer. 
Recently, Giel and Schmidt [6] conducted exper- 
iments in a similar setup with water as the medium. 
The flow was observed using the shadowgraph tech- 
nique and measurements of the flow velocity and 
temperature were made. They also noted a practically 
stagnant and linearly stratified central region of the 
rectangular cell and a boundary layer flow on the 
isothermal, vertical side walls over most of the height 
except very close to the corners. 

Chen and Eichhorn [7] concluded that a similarity 
solution to the problem of an isothermal heated wall 
in a linearly stratified stable atmosphere was not 
possible, and used a local non-similarity approach to 
solve the problem. They also carried out a series of 
experiments on a vertical isothermal cylinder in a 
linearly stratified atmosphere. Raithby and Hollands 
[8] applied the approximate method of Raithby et al. 

[9] to the problem and showed good agreement in 
predicting the Nusselt number with experimental 
results. 
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NOMENCLATURE 

stratification parameter, equation (5) 4’ distance perpendicular to wall. 
stratification parameter, equation (13) 
dimensionless stream function, Greek symbols 

equation (7) thermal diffusivity 

gravitational acceleration ; coefllcient of thermal expansion 

stratification parameter, equation (5) dimensionless y, equation (6) 

a characteristic length, such that : dimensionless temperature, equation 
T, = T., when x = L (8) 
stratification parameter, equation (8) kinematic viscosity 

Nusselt number ; stream function, equations (7) and 
Prandtl number (1%. 
temperature 
vertical velocity Subscripts 

horizontal velocity r reference value 

distance along wall W wall value 
dimensionless distance along wall, x/L ix! ambient value. 

1 

Later, Venkatachala and Nath [lo] solved the 
complete set of governing partial differential equations 
for the problem of an isothermal wall in a linearly 
stratified atmosphere using a finite difference 
approach and then compared their results with those 
of Chen and Eichhorn [7]. They found a very good 
agreement with the results of Chen and Eichhorn [7] 
for small Pr and large (x/L). It was also shown 
that a reversal of flow and temperature occurs for 
(x/L) >0.2. The reversal of flow and temperature 
was predicted by all of the investigators when the 
atmosphere was stratified. 

A similar problem was attempted by Eichhorn [l l] 
using a series solution approach in which the vertical 
wall was isothermal and the cooler ambient atmos- 
phere was linearly stratified, however, an additional 
boundary condition of u(O,y) = 0 was imposed on the 
problem, i.e. the boundary layer was forced to be of 
zero thickness at the bottom edge of the vertical wall. 
This additional boundary condition automatically 
precludes any possibility of finding a similar solution. 
In general, the boundary condition of u(O,y) - 0 is 
overly restrictive because, for example, a match held 
in a quiescent stratified atmosphere induces a fresh 
air flow from the bottom. Thus, it is felt that the zero 
velocity condition at the leading edge is not a practical 
condition for studying a natural convection over 
a heated wall suspended in a quiescent stratified 
atmosphere. 

In another related study, Jaluria and Himasekhar 
[ 121 presented numerical solutions of governing par- 
tial differential equations to a problem when both the 
wall and the ambient temperature varied as a power 
of n. Fujii et al. [13] used a perturbation method 
to solve similar problem; however, they did not 
specifically study the case of linearly varying ambient 
temperature. 

It is thus clear from the literature that for a class 
of problems, which can reduce to the case of an 
isothermal wall in a stably and linearly stratified 

medium, a similarity solution has either not been 
found or is considered to be impossible. It is precisely 
this task that we have undertaken successfully and 
described in this paper. We have indeed obtained a 
class of similarity solutions that can reduce to the 
proper classical solution (r, = cons& T, = const) as 
well as to the specially interesting case of T, = const 
and T,(x) linearly increasing with x. 

In a preliminary study we first investigated the 
problem of natural convection from an isothermal 
flat plate suspended in a linearly stratified fluid 
using the von Kamann-Pohlhausen integral solution 
method. Sixth-order profiles were used which allowed 
for satisfying the necessary boundary conditions 
through the third normal derivatives [14]. It was 
found that the momentum and thermal boundary 
layers were constant in thickness, i.e. inde~ndent of 
x. Based upon this result, we proceeded to seek a 
similarity solution for the class of problems when 
T, = const and the medium is stratified. As a precon- 
dition in our exercise, the similarity solution had to 
reduce to two special cases, the classical one (T,, 
T, = const), and the case where T, = const and T,(x) 
is linear and stable. This paper presents the similarity 
solution and compares results with those of earlier 
investigators. 

ANALYSIS 

Consider a natural convection, laminar, boundary 
layer flow along an isothermal vertical plate immersed 
in a thermally stratified quiescent fluid, as depicted 
in Fig. 1. The isothermal wall is assumed to be of 
finite extent and its temperature at all locations is 
above that of the surrounding fluid at the same 
elevation; this excludes the possibility of dominant 
reverse flow. With the Boussinesq assumption, i.e. 
assuming the density variation to be important only 
in the buoyancy term, the governing equations take 
the form 
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FIG, 1. A schematic of the ffaw over an isotJ~ermal+ imt wail immersed in a stab& stratified and quksoznt 
ambient atmosphere. The actual variatian of the ambient temperature degwds on the choice of parameters 

TO, K, A. and 3. 

Tote boundary conditions are 

Y--&U--V = 0, T= T, = const (4) 

y I* 03: u = 0, T= T,(x). 

tn order to derive a gene& salutiotr the following 
forms for T,(x), q and ~{~) are proposed 

T,(x) = T* - K [8?z:mA + f - l)~BxJ” (5) 

where an9 A, 3, axxd K are constants that are detested 
when the ambient temperature variation is prescribed. 
The exponent m must be an integer. Velocities in the 
bounder layer are given by 

x 

x (-f)=[& -!- ~(-~)~~~~~-~~~~~(~) (10) 

where the prime denotes differ~~t~~tion with respect 
to 1. The introduction of the stream function auto- 
matically satisfies the continuity equation. The 
governing equations and boundary conditions (equa- 
tions (l)-(4)), using the above trau~formations reduce 
t0 

QS=:o:fZfSo; @El 

‘f-*cO:f’=B=O. (13) 

The above is a set of coupled, non-linear, second- 
order, ordinary differential equations with linear 
boundary conditions which do not contain any 
functions of x. 
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Fw. 2. Variation of the ~~~ensi~n~e~~ t~~~ratu~e in the boundary layer for Pr = 6.0 and different vafues 
of the stratification parameter m. 

RESULTS AND DISCUSSfOb! 

The present model contains four parameters m, A, 

B, and IC which are determined by the ambient 
temperature variation. Some special cases of the 
parameter M, which is always an integer, are of 
importance. When m = 0, the model reduces to that 
of the classical case of constant T, and T,, where K 
represents the temperature difference (T, - T,) and 
A and 3 are not relevant to the solution as they 
would not appear in q or $. When m = 1, the ambient 
temperature increases linearly with x. This is a situ- 
ation of practical importance for which a similarity 
solution has not previously been obtained. For this 
case 

f’ 

rt (14) 

Form=2,4,6 ,I.., there is unstable strat~~cat~on and 
form=3, $7 ,..., there is stable stratification. The 
choice M = - 1 represents a cold wall in a stably 
stratified medium and form = - 2, the surroundings 
are either stably stratified or unstably stratified 
depending on relative values of A and 3. 

Profiles of dimensionless temperature B(q) in the 
boundary layer for three different values of m are 
shown in Fig. 2. The classical solution of both T, and 
T, constant is reproduced by the m = 0 curve, the 
stable linear stratification case is shown by m = 1, 

FJG. 3. Profiles of the dim~nsionle~ upward velocity in the boundary layer for various values of Prandtl 
number and m = 1. 
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FIG. 4. Profiles of the dimensionless stream function in the boundary layer for various values of Prandtl 
number and m = 1. 

and m = 3 indicates a cubic power law type stable 
stratification case. The classical solution shows no 
reversal in temperature, but the other two cases do 
exhibit that phenomenon. A relative comparison of 
e(q) is somewhat difficult because q depends on m. 

An interesting feature of this model is that, once 
the value of m is specified, there is only one parameter 
present in the transformed equations, namely, the 
Prandtl number. For example, when there is a linear 
stratification (m = 1), the solution of the similarity 
equations is independent of the slope of the tempera- 
ture variation, unlike the non-similar, non-dimen- 
sional equations of refs. [7, lo]. 

The numerical solution was obtained using a stan- 
dard subroutine package which solves a system of 
ordinary differential equations with boundary con- 
ditions at two points. It is a variable step size finite 
difference method with deferred corrections. The two 
coupled differential equations were first transformed 
into a system of five first-order differential equations 
and then results were obtained forf(q),f’(r7), e(q), and 
0’(O) for Prandtl numbers ranging from 0.1 to 20. 

Since the original interest in this problem was to 
study the boundary layer flow characteristics of an 
isothermal wall immersed in a linear, stably stratified 
atmosphere, mainly the results with m = 1 are pre- 
sented below. 

Figures 3 and 4 show variation of the vertical 
velocity and stream function in the dimensionless 
form, i.e. f’ and J At high Prandtl numbers there is 
a small reversal of flow, while for low Prandtl numbers 
the flow reversal is much stronger. The reversal of 
temperature was found to be stronger at high Pr and 
weaker at low Pr. The total upward flow-rate at any 
given elevation, x, is proportional to 

(15) 

Since at the outer edge of the convective layerf’ 4 
0, equation (10) indicates that v would be proportional 
tof: Figure 4 would thus indicate that v would increase 
with decreasing Pr. The defect in the temperature and 
the flow reversal occur because the cooler fluid from 
the bottom overshoots upward to a level where the 
ambient temperature is higher. This type of behavior 
has also been predicted by earlier investigators [4, 7, 
lo]. 

For further illustration of the flow structure inside 

the boundary layer, Fig. 5 shows contour plots of 
isothermal lines for the m = 1 case when Pr = 6.0. 
The temperature reversal is clearly seen, which reduces 

with height. In this figure, L is a characteristic length 
such that when x = L, T, = T, 

Figures 6 and 7 show comparisons of our similarity 

solution for Pr = 6.0 with other solutions, namely 
the series solution of Eichhorn [ll], local non- 
similarity solutions of Chen and Eichhorn [7], finite 
difference solution of Venkatachala and Nath [lo], 
and our own integral solution [14]. Numerical sol- 
utions presented by Venkatachala and Nath [lo] are 
almost the same as those of ref. [7J therefore, they 
are not shown separately. Since the solutions of refs. 
[7, 10, 111 depend upon X and KB (the slope of the 
ambient temperature) two of their extreme cases for 
X = 0.2 and 0.8 are compared with our solution which 
is independent of either 5 or KB. There appears 
to be a good qualitative agreement between these 

solutions. The temperature defect and flow reversal 
regimes are predicted by refs. [7,10,11]. As mentioned 
earlier, Eichhorn [11] used the assumption that to 
approximate the enclosure problem with one hot and 
one cold vertical wall, ~(0, y) = 0. Experiments show, 
however, that a horizontal flow is grazing the floor 
toward the wall near the bottom which is then sucked 
into the boundary layer. Hence the boundary layer 
structure of the flow will not start at the bottom of 
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FIG. 5. Isothermal contours for Pr = 6.0 and m = I. 

the wall of the enclosure, but it will rather start some 
distance above the floor; and therefore, ~(0, y) = 0 is 
not a physically realistic situation. It is this boundary 
condition that forces the low values of velocity at 
small I shown on Fig. 7. 

The local Nusselt number can be obtained by 

Nu = - C,xB’(O). (16) 

Figure 8 shows results for -0’(O) as a function of 
Prandtl number. As the Prandtl number increases, 
the Nusselt number first decreases, then increases. 
Yang et al. [4] presented - 6’(O) against Pr for a 
case ‘I, = const with ambient temperature linearly 
decreasing with height (unstable stratification). They 
obtained exactly opposite behavior, i.e. - 0’(O) first 

1.0 

h - 
-cl- 

* 

PRESENT SIMILARITY SOLUTION, m= I 
CHEN AND EICHHORN C77, K = 0.8 

CHEN AND EICHHORN C71, AND VENKATACHALA 
AND NATH Cl03 , X= 0.2 

EICHHORN Cl I I, F= 0.2 

INTEGRAL SOLUTION, m=i tl41 

increased, then decreased. In both cases, the extreme 
point, i.e. the maximum or minimum, occurs between 
Pr = 1.5 and 2.0. The significance of the existence of 
such an extremum is not clear. In most other cases 
of stable stratification (including the cases when T, 
also changed with height), Yang et al. [4] have found 
that - 6’(O) increased monotonically with Pr. The 
two bars shown in Fig. 8 are results of a local non- 
similarity solution by Chen and Eichhorn [7] for % 
ranging from 0.1 to 0.9. The vertical bar at Pr = 6 
also represents the range of results from analytical 
solutions of ref. [lo] and experimental measurements 
of ref. [7]. The dotted line represents the integral 
solution [14]. It is clear from Fig. 8 that our similarity 
solution is in qualitative agreement with the integral 
solution and the results of refs. [7, lo]. 
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FIG. 6. Comparison of results for the dimensionless temperature; Pr = 6.0 and linear ambient stratification. 
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FIG. 7. Comparison of results for the dimensionless vertical velocity; Pr = 6.0 and linear ambient 

stratification; see Fig. 6 for symbols. 

As very limited experimental data exist for stratified REFERENCES 

flows, it is difficult to verify the theoretical results, 
in particular the interesting aspects of flow and 
temperature reversal. There is a definite need for more 
systkmatic experiments for further evaluation of these 
phenomena. 
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SOLUTION AFFINE POUR LA CONVECTION NATIJRELLE SUR UNE PAR01 
VERTICALE ISOTHERME IMMERGEE DANS UN MILIEU THERMIQUEMENT STRATIFIE 

R&sum&-Une solution affine est obtenue pour la convection naturelle sur une paroi isotherme chauffke, 
suspendue dans une atmosphere au repos, thermiquement stratifiee. Une nouvelle variable de similitude 
est definie qui se reduit B celle du cas classique dune plaque isotherme dans un milieu au repos, i 
temperature uniforme. On reprisente correctement le cas dune plaque isotherme dans une atmosphere 
lin&airement stratifiee. Les valeurs calculees de la temperature deficitaire et du renversement d’&coulement 

sont en accord quahtatif avec des r&hats obtenus par d’autres chercheurs. 

E~NE A~;HNLICHKEITSBJJNG FUR DIE NATURLICHE KONVEKTIONSSTROMUNG 
AN EINER VERTIKALEN, ISOTHERMEN, IN EIN THERMISCH GESCHICHTETES 

MEDIUM GETAUCHTEN WAND 

Z~a~enfa~ung-Eine ~hnli~hkeitsl~sung fur die natiirliche Konvektjonsstr~mung an einet isotherm 
beheizten Wand. die Jon einer ruhenden, therm&h geschichteten Atmosphere umgeben wird, wurde 
entwickelt. Eine neue Ahnlichkeitsvariable wird dehniert, die sich auf diejenige des kiassischen Falls, einer 
isothermen Platte in einem ruhenden, einheitlich temperierten Medium, reduzieren hi&. Der Fall einer 
isothermen Platte in einer stabil linear geschichteten Umgebung 1aRt sich ebenfalls gut darstellen. Dies ist 
ein eindeutiges Merkmal, das bisher noch nicht beriicksichtigt wurde. Berechnete Werte ortlicher Tem- 
peraturdefekte und Riickstromungen stimmen qualitativ mit den Ergebnissen friiherer Autoren iiberein. 

ABTOMOAEJIbHOE 
M30TEPMM4ECKOI?I 

PEIIIEHME YPABHEHMH ECTECTBEHHOH KOHBEKHMM ,JIJIII 
BEPTWKAJIbHOH CTEHKM, HOI-PYXEHHOH B TEPMM4ECKM 

CTPATHOMHMPOBAHHYIO CPEAY 

hmoTauHn--fIonyueH0 aBTOMoAenbHoe peuIeHue ypaBIieHKii eCTeCTBeHHOii KOHBeKuHH Ann nonorpe- 
BaeMOfi u30TepMH%CKOi? CTeHKH, HaXOAK~e~C~ B HenOAB~~HO~ TepP.WECK~ ~Pa~~~~~~pOBaHHO~ 

aruoc+epe. BBeAeHa rfoaas aaToMo~enbHaa nepeh4eunar. roropan e x~a~nYecKoM cnysae nsorephm- 
'feCKOl? IWIWTWHM B HeIlOABSXCHOii CpeAe C uOCT0KHHOii TeMRepaTypO% I'IePeX0AH-r B H3BeCTHYIO Ilept?- 

MWH)'KLOKa3bIBaeTCZ=I TaKxe:,9TO OHa COOTBeTCTByeT CAy'WO H30TePMWEKOi? WIaCTMHbI B yCTOi-W,BO 

CTpaTH@i~iipOBaHHOi? II0 JIuHeiiHOMy 3BKOH)' CpeAe. YKa3ilHHaK OCO6eHHOCTb PaHee HUrA.C B miTepa- 

Type He 06CyxAaAaCb. &WieTbI JIOKUIbHbIX OTKJIOHeHBfi TeMIIepaTypbI A 06paTHblX IIOTOKOB KBWCT- 

BeHHO COrJVlCyIOTCSl C ~3yAbTaTaMH,nOAyqeHHblMllApyrUMH ZlBTOpaMU. 


